

7th International Artillery and Indirect Fire Symposium and Exhibition

MAJ Jason Robbins
US ARMY, ARDEC
Deputy, Artillery and Mortars Division
973-724-3155

Robbinsj@pica.army.mil Afran@pica.army.mil

AMC

Responsive Accurate Mission Module (RAMM)

Objective

• Design/Develop a lightweight highly responsive automated unmanned indirect fire module that will integrate onto multiple platforms and provide accurate remote (SENSOR-TO-SHOOTER) capability through a digital network to engage Area of Operation targets.

In 1998 FSAC, developed the first unmanned mortar technology demonstrator called Dragon Fire for the MCWL which successfully demonstrated the utility of a remotely controlled indirect fire system.

Lethality without Soldier Vulnerability

Initial Concept Demonstrator

Demonstrator Characteristics:

AMC

- Unmanned/remote controlled after emplacement
- Self-orienting/Self-positioning
- Able to receive digital call for fire and MET data
- Capable of internal ballistic computation for firing solutions
- Automatic gun pointing, ammunition loading and firing
- 360 degree traverse firing
- **Transportable in V-22** aircraft
- Dragon Fire was single shot, stationary, remote controlled, with automated fire control and gun pointing
- RAMM will be multi shot, highly mobile, modular system with high level functionality leveraging Dragon Fire's proven technology

V

Responsive Accurate Mission Module (RAMM)

Control Network Architecture

TACOM-ARDEC

AMC

Maneuver Direction Center
 Mobile Platform Control

Area MET Center MET Data

Forward Observer (Optional control) — TD/ Fire Mission

Fire Direction Center Fire Mission/Module Management

• RAMM Module Fire Mission Processing

Traditional Control Architecture

• Direct Control from FO (Aid in MOUT Combat)

Module Concept

Performance Baseline

Capability	Current Capability	Threshold	Objective
System Weight	7000lbs (Dragon Fire)	6000lbs (includes 2000lbs in armor)	40001bs
MV variation	2.5m/s (M120)	1.5 m/s	1 m/s
Pointing accuracy			
Elevation (1 Sigma)	2 mils	1 mil	.5 mil
Deflection 1 Sigma)	4 mils	1 mil	.5 mil
Responsiveness	8-12 min. (M120)	15 sec	11 sec
Crew Size	4 (M120 & M121)	0	0
Elevation Range Degrees)	40 to 85(M121)	0 to 85	-3 to 85
Traverse Range	90 (M121)	360	360

AMC

GENERIC FCS VEHICLE/RAMM IN C130 AND RAILWAY TUNNEL GAGE

RAMM MOUNTED ON GENERIC FCS VEHICLE RAMM ON FDRU Or Robotic follower vehicle

RAMM MOUNTED ON LAV III

AMC

Responsive Accurate Mission Module (RAMM)

Why 120mm Mortar?

Advantages:

- Interoperability many NATO 120mm mortar varieties
- Accuracy pin point accuracy w/ PGMM, automated pointing improves conventional round accuracy
- Lethality 120mm HE provides 65-85% lethality of current 155mm HE
- Range 300 m (HE) 200m (Smoke/illumination), XM984 and PGMM out to 15Km
- Simplicity for Automation rounds are a unitized package (propellant/primer/etc).
- Relatively Lightweight armament compatible with FCS size platforms
- Economy advanced rounds at end of development cycle, low conventional round cost

PGMM

Conventional Rounds

XM984 QUICKLOOK

Basic Missions Concept

RAMM is a <u>hybrid indirect fire system</u> that combines select capabilities of <u>traditional mortars</u>, <u>artillery</u> and <u>direct fire systems</u>.

- Indirect Suppressive Fire
- Indirect Target Degradation
- Indirect Harassment Fire
- Indirect Soft target strikes
- Smoke Screen Fire for obscuration

- Battlefield/Target Illumination
- Very High or Low Angle Fire for MOUT
- Limited Direct Fire Capability
- Precision Strike against earth and timber bunkers, masonry walls and

Basic Networked Operation

Widely dispersed RAMM systems can concentrate fire power on single or multiple targets to be used as a FORCE MULTIPLIER

Utilizing CDAS technology, the Future Warfighter will be able to:

- Achieve high ROF by cycling multiple RAMM units
- Conceal location from enemy fire by firi from multiple locations
- Optimize individual magazine inventory firing select rounds from select RAMM systems

Improved accuracy allows stowed kills to be optimized for:

- Pre-programmed patterned or random fire impacts
 - Area saturation/denial coverage
 - Random harassment fire
 - Linear coverage to intersect stationary targets
 - Linear coverage to engage constant velocity moving targets (trains or convoys)
- Multiple round simultaneous impacts (MRSI)

